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Abstract 

One of the current trends in spacecraft software design 
is to increase the autonomy of onboardflight and science 
software. This is especially true when real-time 
observations may afect the observation schedule of a 
mission. For many science missions, such as those 
conducted by the Swift Burst Alert Telescope, the abiliw 
of the spacecraft to autonomously respond in real-time to 
unpredicted science events is crucial for mission success. 
We apply utility theory within resource management 
middleware to optimize the real-time performance of 
application software and achieve maximum system level 
beneft. We then explore how this methodology can be 
extended to manage both software and observational 
resources onboard a spacecraft to achieve the best 
possible observations.' 

1. Introduction 

One of the current trends in spacecraft s o h a r e  design 
is to increase autonomy and automation in onboard flight 
and science Software. This is especially true when real- 
time observations may affect the observation schedule of a 
mission. One example of this is the Swift Burst Alert 
Telescope instrument [ 151. Swift will respond to onboard 
detection of gamma ray bursts in real-time. Its actions 
will include: notifying the ground of the event via 
TDRSS; interrupting the planned science schedule and 
commanding the spacecraft to reorient its attitude toward 
the burst; reconfiguring the onboard processor for Gamma 
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Ray Burst (GRB) data processing; and intercepting the 
onboard science plan following completion of the burst. 
The decision of when and whether to interrupt the on- 
going survey task and respond to a particular GRB event 
is a function of the relative merit of each proposed 
observation. When the scientific benefit of responding to 
a perceived GRB event is greater than the scientific 
benefit of continuing the survey, the spacecraft 
autonomously decides to reorient and respond to the GRB 
event. The ability of the spacecraft to autonomously 
respond in real-time to unpredicted science events is 
crucial for this mission's success. 

This example demonstrates the use of increasingly 
powerful computers to perform science processing and 
analysis in real-time on-orbit. As this trend continues, 
spacecraft will need to make increasingly complex 
autonomous decisions about which action among several 
will return the most valuable scientific data. This task is 
even more complex when spacecraft are involved in 
coordinated scientific observation involving constellations 
of spacecraft and multiple instrument platforms as NASA 
envisions for future missions. 

Utility theory, the theory that provides mathematical 
tools to compute the relative value of different courses of 
action, was originally developed by economists to model 
the decisions made by consumers [8]. It has been 
addressed by many researchers and used in diverse fields 
to determine optimal decisions, i.e., to decide which 
action among several is the best one [9], [lo] (compare 
[ 1 13 for an overview). It has been recently incorporated in 
adaptive resource management middleware (ARM) that 
optimizes the real-time performance of sets of application 
software. The middleware plans actions that include which 
software to run on which resources to achieve the 
maximum system level benefit. Our previous research in 
the field of ARM includes static models for resource 
allocation of real-time systems [ 1, 21 and dynamic models 
in [3, 41. Applications of our dynamic models [5,  6 ,  71 



showed their effectiveness for adaptive resource 
management. However, our previous approaches lacked 
the information needed to gracefully degrade performance 
in overload situations, did not support feasibility analysis 
or allocation optimization, did not consider security 
aspects, and did not include network hardware. To 
overcome these drawbacks, we proposed a general 
optimization framework for distributed, dynamic real-time 
systems [12]. Interesting aspects of this model include 
dynamic environments, and utility and service levels, 
which provide a means for graceful degradation in 
resource constrained situations. 

In 1131 we proposed a hierarchical ARM architecture 
based on our general framework and a heuristic 
algorithmic approach based on a table lookup technique to 
solve the corresponding resource allocation problem. 
This paper explores how this methodology can be 
extended to manage observational resources in addition to 
the software resources onboard a spacecraft to achieve the 
best possible observations. 

Chapter 2 presents an overview on the RM system 
fiamework presented in [12] and [13]. Chapter 3 
proposes an architecture for an adaptive resource 
manager. Chapter 4 describes how our model can be used 
to incorporate the relative benefit of observational 
resources. Chapter 5 provides an example describing how 
our framework would act onboard a satellite. 

2. RM System Framework (Overview) 

In this section we summarize the general resource 
management model presented in [I21 and [13]. The 
model assumes that available CPUs can be treated as a 
(possibly heterogenous) set of computational resources 
that software tasks are run on. It is possible to run a task 
on a choice of CPUs, thereby requiring the RM system to 
allocate tasks to CPUs. This also allows the system to 
have greater fault tolerance. If a particular CPU is down, 
the tasks may be reassigned to other processors. This 
fiamework is applicable in various contexts such as the 
total shipboard computing environment for warships, 
cooperating robots, onboard satellite systems, and for 
many ground-based real-time systems. It is our goal to 
remain context-fiee in describing the model, while 
showing the applicability to the satellite domain in 
subsequent sections. 

A dynamic real-time system is composed of a variety 
of software components, as well as a variety of physical 
(hardware) components that govern the real-time 
performance. 

The physical components of a real-time system can be 
described by a set of computational resources and an 
interconnection network, and other devices. The 
computational resources are a set of host computers H = 

( h  ,, . . . , h,}. It is generally assumed that the properties of 
the computational resources and the network resources are 
known. 

Regarding the software components, we distinguish 
two different software systems (see [12]): 

The application software system. Its general purpose 
is to control the environment. It may also include the 
control of hardware components of the real-time 
system. There is a logical view that distinguishes 
several levels of abstraction. The highest level 
represents the whole application software system. 
This is often referred to as “system”, which, on the 
next lower level, is considered as a collection of 
subsystems SS,, , . . , SS, 
The surveillance and management system (or 
Resource Manager, RM) is responsible for the 
correct cooperation between the components of the 
application software, to ensure real-time conditions 
such as timeliness, dependability, security, etc. 

A subsystem represents some part that can be logically 
separated fiom the total system. It is responsible for 
managing a part of the real-time system, such as a 
hardware component. A subsystem is a collection of 
paths, each with a given period or a given maximum 
frequency. Each path consists of a set of tasks and 
possible precedences between them. Tasks inherit the 
period or maximum fiequency from their paths. 

Scheduling theory does not only deal with task-to- 
processor allocation, but also with schedules. Besides task 
allocation, a schedule defines the start times of tasks. For 
a periodic task we may simplify the schedule specification 
by a greedy rule, saying that each time a host becomes 
free it chooses a task of highest priority among all tasks 
that are waiting to be serviced by the host processor. 
Priority may be defined externally. Other common ways 
are by deadline (earliest deadline first strategy, EDF), or 
by the rate monotonic rule. The event-driven tasks with 
given rate r can be treated as periodic tasks with period 
r-’. By specifying the scheduling rule for the execution 
order, the schedule is uniquely determined from the task 
allocation. As we will see, only the feasibility of an 
allocation has to be checked. 

During their execution the tasks will require certain 
system resources. In particular it is assumed that tasks 
have known execution and memory profiles that depend 
on various circumstances, 

on the processor it is assigned to, 
on certain parameters that cannot be changed 
(“extrinsic parameters”); these define operational 
conditions and are set by the environment or by 
the system components. 
on service parameters; they can be changed at 
runtime, e.g., in order to optimize system benefit. 

See [12] for a detailed description. 



The execution of tasks, and consequently the system 
behavior is highly determined by the values of a number defined by b;. : [min-si, mmr-si] -+ (0, ..., ma\-?,]. This 

of attributes. There are two types: extrinsic attributes E = 
(el, ..., ek), and service attributes S = (sl, ..., sl). Extrinsic 
attributes express functional conditions or requirements. 
Extrinsic attributes are either posed by the environment, 
or by the status of the system components. They are set by 

granularimtion leads to discrete service attributes %, with 

range {’, *..’ ma\-si}* 
For both, extrinsic attributes and service attributes, we 

use tilde (-1 to denote discretization; e&, the vector of 

w 

external conditions and cannot be changed by the system. 
It is generally assumed that the values of an extrinsic 
attribute ranges within a known interval [min, rnax], where 
higher values represent more stringent conditions. 

An example of an extrinsic attribute dictated by the 
environment “externally” is the period at which a 
controlling action has to be performed. An example of an 
“internal” extrinsic attribute, defined by the system, is the 
availability of processors, buffers, or internal network 
bandwidth. 

Each subsystem SS, has to react properly upon changes 
of extrinsic attributes. We denote by Ei the subset of 
extrinsic attributes that must be handled by SS, . 

In contrast to the extrinsic attributes, the service 
attributes S = (sl, ..., s,) are entities that can be changed at 
any time by the controlling system. If the external 
conditions (represented by the extrinsic attributes) change, 
appropriate settings of the service attributes allow 
adaptation to the new conditions. 

Given an extrinsic attribute with range [min, max], we 
expect consequences for the system behavior only if the 
attribute changes by at least some minimum amount. 
Therefore we discretize attribute values by defining a 
mapping of the interval [min, max] to a finite set of 
discrete values. There is no loss of generality if we choose 
a set of integers 0, I ,  ..., mm-e, where m a - e  is defined 
by an acceptable granularity. The mapping y :  [rnin, m a ]  
+ (0, I, ..., max-e} is defined by da) = L(o - 

Henceforth we assume that, along with k extrinsic 
attributes el, ..., ek , there are given maximum integers 

max-el , ..., max-ek . There are mappings of extrinsic 
attribute values to grid points, 

f i  [min-e,, mm-ei] -+ (0, ..., ma-<.> (i = I, ..., k). 

These values define a grid of dimension k, with 

G =  { ( G ,  ..., $ 1  < E  (0, ..., max-ei, i =  I, ..., k}. 
Similarly to the external attributes, we also discretize 

service attributes. If the range of service attribute si is 
[min-st ma\-si] (discrete or continuous), then a mapping 

of service attribute si to a discrete service attribute F j  is 

- - 

+ I points in direction i , 
5 

5 

discrete service attributes is denoted by 
In both, the pre-runtime analysis and the runtime 

system, we consider only discretized values of extrinsic 
and service attributes. For simplicity, the terms “extrinsic 
attribute” and “service attribute” are used in the discrete 
sense. 

Finding optimal allocations is generally a hard 
problem, consuming time that is at least exponentially 
increasing with the number of tasks. Checking the 
feasibility of a chosen allocation, however, can be done 
very fast and in time that increases linearly with the 
number of tasks. There are many ways to obtain sub- 
optimal allocations, for example by applying heuristic 
scheduling strategies. In these, a number of allocations is 
chosen in a way specified by the heuristics, and checked 
for feasibility and optimality. 

In [I31 we followed an approach in which a set of 
allocations {allocl, . . . , allocK} is chosen heuristically, 
and each is analyzed with regard to its feasibility under 
different settings of extrinsic and service attributes. Since 
we perform our analysis on discrete attribute values, for 
each allocation alloci it is checked on which grid points it 
is feasible. Maximum points are referred to as Pareto 
points. For an allocation allocj 0 E {I. ..., K)), and a 

vector s“ of discretized service attribute values, Puretos; 

(alloci> denotes the set of grid points E = (zI,  . . ., ek) that 
have the properties 

aZZo9 is feasible if the service attribute values are 

= G I ,  . . . , s ~ ) .  

Y 

(i) - 
set to s = GI, ..., S,) - 

(ii) there is no point E’ = GIf ,  ..., ek’) E Paretog 

(alloci>, E # E ’ ,  that dominates (i.e., z,’ 2 zi for i = I ,  
..., k). 

The set of Pareto points stands for a set of allocations 
along with settings of service level attributes that allow a 
maximum increase in extrinsic attributes. Hence, this set 
represents an investigation of the operational limits of the 
real-time system. 

In [13] an algorithm is presented that determines 
Pareto points during a pre-runtime analysis. 

For local optimization in the subsystem SS,, a function 

Ui( ,$, Ei) called “local utility function” is provided. The 



objective is to set the service attributes such that the 
system operates optimally, i.e. a maximum profit is 
gained. To measure the profit, an overall utility function 
Us,,,,, is defined whose value depends on both the 
service and the extrinsic attributes. This allows one to 
evaluate each point of the Pareto - s?, (alloci): 

Usyslem : ((&, ..., sI), G) += ZR (real numbers) 
Function Usyslern gives a numerical benefit that is 

attained if the extrinsic attribute values are G, and the 

system service attributes si are set to $ (i = 1, ..., 0. A 
practical way is to compute Usys,em &om the subsystem 
utilities by means of some aggregation function: Usysrem 
:= aggregation(Ul, ..., Um). For example, for numerical 
weights wI, . . ., w, we may define 

( S l ,  ..., 
% 

rn 

Usyspm := Z w  i U; 
I 

The objective of the pre-runtime analysis is to 
investigate operational limits of the control system. Given 
sets of extrinsic and service attributes, we want to find a 
feasible allocation that maximizes the values of extrinsic 
attributes, while the values of the service attributes are 
such that an overall utility is maximized. Indeed we are 
facing a high-dimensional multicriterion optimization 
problem, which, due to its computational complexity, can 
only be solved heuristically (cf. [ 131). 

For each of K > 0 chosen allocations (allocl, ..., 
alZocK}, Pareto-points are determined. Each set of Pareto 
points Paretog(a1ZocJ can be represented by a service 
table 

ST(a2loc;) = ( ( 5, E) 1 E E Paretog(aZloci) , and 
u 

E (O..mar-s,, ..., O..ma-$ } } . 
At runtime, the allocation manager chooses an 

allocation by selecting a service table that best fits current 
requirements of extrinsic attribute values (compare [ 131 
for more details). 

3. ARM Architecture 

The ARM is responsible for the correct operation of the 
whole system. As input, it is given the static 
characteristics of both the hardware system and the 
software system. Based on these, it makes resource 
allocation decisions and has the ability to modify certain 
performance parameters such as service attributes. The 
resource manager consists of an allocation manager (AM) 
which chooses a new allocation of application software to 
hosts due to major changes of extrinsic requirements, a 
global meta agent (GMA) which checks if reallocation of 

application software to hosts is necessary, and tries to 
optimize total benefit, meta agents (MA, , i = I, ..., m) 
each being responsible for controlling an application 
subsystem (SSi). 

One reason for including GMA is overall utility: each 
Mi tries to optimize its own behavior. In contrast, GU4 
has a global system view that allows for an optimization 
on a higher level through negotiation. Another reason is 
efficiency: a reallocation of software modules among 
hosts involves major changes that take considerable time 
and affects the real-time requirements of the environment. 
Hence, the attempt is to delay reallocations as long as 
possible, and instead to make orders of magnitude faster 
adjustments of system parameters (the service attribute 
settings) on the GMA level. 

3.1. Allocation Manager 

One of the main objectives is to find an optimal 
allocation of the applications to host computers. Such an 
allocation, formally described by a function host: A + H, 
has to fulfill runtime conditions and memory limitations 
on the hosts. Both execution time and memory usage of a 
task depend not only on extrinsic and service attribute 
parameters, but also on the machine on which the task is 
being executed. 

If the actual instantaneous extrinsic attribute values 
change and exceed the operational limits of the current 
allocation, the GUA triggers the AM to choose and install 
a new allocation. The AM will then decide upon a new 
allocation that is able to handle the requirements of the 
new extrinsic values. The decision is based on the global 
service tables ST(alZocl), . , ., Sr(aZZocK) provided by the 
pre-runtime analysis, and on the utility that potentially can 
be gained from the new allocation. 

A concept that offers the ability of adaptation to trends 
in the development of extrinsic attribute values, is the use 
of statistical data about extrinsic attributes. Assume, for 
example, that for each extrinsic attribute ej , both, a mean 

value 5 = yj(<) and standard deviation q := 46) are 

available. E and oMW can be computed from the last 
N changes of extrinsic values. N can be interpreted as the 
length of a sliding window that specifies how far historic 
values are considered. For example, for N = 1 we get 

0. In this case, the model 
becomes deterministic because the algorithm must choose 
an allocation that is able to dominate the new requirement 
E new. If N > 1, the algorithm will accept an allocation that 
potentially violates domination with some probability, Le., 
also non-dominating allocations are accepted. 

The advantage of this approach is two-fold: 

-new 

EmW = Enew and new = 



Requirement peaks can be ironed away. 
The size of history determines how fast the 
control mechanism is able to adjust to new 
requirements. 

In [I31 the algorithm to realise this strategy is 
explained in more detail. 

A component-wise defmed function AEneW, one") is 
used to set minimum requirements for the manageable 

extrinsic values. An example function isAE , CJ ) := 
-new new 

EneW - oMW. Considering f = U;, .. ., f,) as a point in the 
k-dimensional space of extrinsic values, we measure the 
distances between Pareto points (P) and f by applying a 
metric that gives extrinsic attributes with a smaller 
standard deviation a higher influence on the distance, 

weighted-distance (P,j) := 4- . (1) 
The adaptable strategy chooses a Pareto point P that 

dominates f and has smallest weighted distance to$ 
With knowledge off ;  the first step of the AM is to 

remove all entries fiom each S~al loc , )  that do not 
dominatef: The result is a set of K reduced service tables. 
In the next step, the AM computes the utility for each 
entry of each reduced table. Among these reduced tables 
the one with the highest utility entry is kept and sent to the 
GMA, and its associated allocation is realized (arbitration 

is applied in case of ambiguities). The component Em = 
(em,, . . ., emk) of this table is called manageable extrinsic 
attribute vector, because it defines the maximum possible 
extrinsic values for each service setting that can be 
handled by the new allocation. 

In the computation of U, , the requirement vector Ei is 

N 

H 

used instead of Emi for the following reason: though the 
chosen allocation offers more capabilities (expressed by 

the dominating Em,. vector), the system will not realize 

higher requirements than necessary (expressed by Ei). 

N 

Y 

3.2. Global Meta Agent 

The purpose of the GUA is to provide an interface 
between the allocation manager and the Meta Agent MA, 
of each subsystem. 

The GUA essentially consists of two algorithms that 
are described in [ 1 31. 

Note that in this solution, only one tuple is returned to 

each MA, receives exactly one vector (Si , EL,). To 
w 

assign M i  higher functionality (and hence more 
responsibility), GMA can return a set of possible tuples, 
and give the M i ' s  freedom to choose a setting according 
to their needs. 

The algorithm Reallocation-Request checks if a call to 
the allocation manager is required, or if an adjustment 
without allocation change is possible (cf. [ 131). 

Feasibility of an allocation is guaranteed as long as 
there is a table entry in ST(al1oc) whose manageable 
extrinsic attributes dominate the given extrinsic attributes 
G. In case of a request fiom Mi,  the G M  (i.e. the 
reallocation-request) quickly has to decide if a new 
allocation is requred. Alternatively, the 
reallocation-request may take into account, how many 
dominating tuples remain in ST(ulloc), and triggers the 
allocation manager if this number becomes too small. 
Another criterion can be utility-oriented if the total utility 
drops more than some minimum amount, then a new 
allocation is requested. 

3.3. Meta Agents 

The concept of a separate Meta Agent MA, for each 
subsystem SS, makes it possible to physically distribute 
the meta agent software components. The realisation of a 
local optimizer algorithm is explained in [ 131. 

Among those service table entries (identified by the 

partial service attribute values of sl for which the 
allocation is feasible), choose one with maximum local 
utility Vi . This way service attribute settings are chosen 
such that utilities are maximized in each subsystem. 

If the extrinsic attributes change during runtime, the 
local optimizer in the subsystem Meta Agent M i  adjusts 
to these changes by first checking (local) feasibility of the 
entries of the partial service table. As a consequence MA, 
might find a new set of service attribute settings, subject 
to optimizing the subsystem utility. In this case it sends 
suggested partial service attribute values as a request to 
the Global Administrator. 

3.4. Cooperation between the components of the 
RM 

The situation defmed by current extrinsic attribute 
values and service attribute settings changes if the 
extrinsic values change. In this case, the Mi's check if 
the altered settings of service attributes would allow 
improved local utilities. 

If a meta agent MA, realizes that its local utility can be 
raised by some minimum amount, it issues a request to the 
GMA to change service attribute settings. The G M  



responds to this request by checking the service table 

Sr(uZZoc). If it finds an entry (5, Em, U) that improves 
overall utility, while the extrinsic attributes are dominated 

by Em , the GUA would return $ and the new manageable 

bounds Em to all Mi's . If there is no such entry in the 
service table, then the changes in extrinsic attribute values 
cannot be handled by the current allocation ulloc, and the 
allocation manager is triggered to choose a new allocation 
that is better adjusted to the current situation. 

A direct response to the MA,'s is expected to need 
orders of magnitude less time than asking the allocation 
manager for a new allocation. Therefore the GUA is 
designed such that it tries to keep the current allocation as 
long as possible. 

The data structure based on which the GUA makes its 
changes is the service table ST(u1Zoc). As a consequence, 
changes in the extrinsic attribute values excludes those 

table entries from consideration, whose Em-components 

do not dominate the new extrinsic settingAG , G ). 
Criteria for calling the allocation manager AM are: The 
ST(yaZZoc) is exhausted, i.e. it has no entries dominating 

A cnew, gneW). A weaker condition is utility-oriented If 
utility drops considerably (by some specified maximum 
amount), or it drops below some given limit, then, though 
there might still be dominating entries in Sr(ulloc), the 
AM is called. 

N 

N 

N 

N 

-new new 

4. Modelling Observational Resources 

Observational spacecraft software is often driven by a 
schedule determined a priori. Such a schedule may 
indicate to a sensor when to start an observation, the 
duration of an observation, the rate of receiving data, and 
the importance to the scientist. We claim that the 
information stored in such observation schedules can be 
modeled in our framework as extrinsic attributes and used 
by ARM control s o h a r e  to plan for better utilization of 
the spacecraft resources. In addition, ARM can 
effectively react to dynamic changes in observation 
schedules due to unpredicted science events such as 
Gamma Ray Bursts (GRB) in the Swift Burst Alert 
Telescope [15] system. In [13], an Image Processing 
System (IPS) is introduced as possible observation-based 
spacecraft software. An observational schedule for such a 
system may appear as in figure { 1 1. In this example, the 
rate that the camera will take pictures during a time h e  
can be determined by the extrinsic attribute period. The 
ARM control software must provide a resource allocation 
that allows the IPS to meet all real-time constraints for the 

current observation while maintaining optimality of 
system utility. In addition, ARM must react to schedule 
changes such as the sudden increase in importance due to 
the onboard detection of hurricane formation on the 
Atlantic Coast. 

... 
<observation name="atlanticcoast"> 

<time name="staK~20030317 03:00:00</time> 
<time name="end">20030317 03:30:00</time> 
<extrinsic name="period" unit="sec">30</extrinsic> 
<extrinsic name="importance">5</extrinsiu 
<extrinsic name="cloudcovef >70</extrinsic> 

c/o bservatiom 

<observation name="washingtondc"=- 
... 

<time narne="start">20030317 04:30:00</time> 
<time name="end">20030317 05:00:00</time> 
<extrinsic name="period" unit="secn>30~/extrinsic> 
cextrinsic name="importance">l O</extrinsic> 
cextrinsic name="cloudcovef >454extrinsic> 

</observation> 
... 

Figure I: Example Observation Schedule 
Another important reason for having a hmework to 

model observation schedules for spacecrafts is due to the 
presence of persistent (nonrenewable) resources and 
constrained downlink availability and capacity. With such 
a m e w o r k ,  ARM s o h a r e  can also plan and control the 
usage of persistent resources such as onboard storage 
buffers to prevent less important data from excluding 
more important data in the presence of resource 
overloads. In some sense, the utility of a spacecraft 
mission is directly proportional to the quality of data that 
is returned to the ground. The observation schedule can 
be used by ARM to determine the expected storage 
requirements for a subsystem. These expected 
requirements can be used as a basis for decisions 
concerning the use of the persistent resources to optimize 
the utility of the data that eventually reaches the scientist. 
Much work remains to be done in developing ARM 
policies for persistent resources. 

5. Satellite Example 

The Swift [I51 system for identifjkg and processing 
Gamma Ray Bursts (GRB) is a current NASA mission 
that requires autonomous decisions to be made onboard 
satellites. In Swift, a sensor scans space looking for a 
GRB. Once a GRB is detected, the satellite determines 
the originating direction of the GRB, slews the sensor 
towards the GRB source, and observes the afterglow 
produced by the GRB. The current Swift implementation 
does not use resource management middleware to 
accomplish these dynamic tasks. However, in this section, 



we describe how such a satellite system could operate 
under the control of the proposed resource management 
firamework. 

The Swift mission can be decomposed into the 
following tasks: scanning by the Burst Alert Telescope 
(BAT), detection by the BAT, slewing by the satellite 
positioning system, observation by the X-Ray Telescope 
(XRT), and observation by the Ultra-VioletDptical 
Telescope (UVOT). Other potential tasks that may need 
to be performed simultaneously include the collection of 
health and safety data and power management. 

The Swift system currently operates without resource 
management (RM) middleware as follows. All three 
instruments (BAT, XRT, and UVOT) continuously 
produce images in the direction they are pointing based on 
some positioning schedule for surveying/scanning that is 
created a priori. In the presence of a new GRB source, 
Swift autonomously updates its observation schedule so 
the system can capture images of the new GRB. Since 
GRB images are the most informative during the first few 
minutes, Swift attempts to capture new GRB sources as 
soon as possible. Once a set amount of images of a GRB 
source have been collected, Swift will again follow the 
positioning schedule for surveying/scanning. 

The same functionality described in Swift can also be 
conducted within the presence of resource management 
(RM) middleware. If RM were to be used for controlling 
the Swift system, then the various RM components would 
also be running on the satellite. Resource monitors would 
gather the current state of all onboard resources. 
Resource control mechanisms would be in place to allow 
the relocation of applications to different processors and 
various other control techniques. In addition, the 
components that realize the decision-making within our 
proposed framework would also be running on the 
satellite: the Allocation Manager, the Global Meta Agent, 
and a Meta Agent for each subsystem. 

In an RM-compliant implementation of Swift, the 
positioning schedule could be modeled as a set of service 
attributes to be given to the satellite positioning agent, 
where possible attributes include the location, duration, 
and relative scientific importance. In the absence of a 
new GRB, the Meta Agent would determine the service 
attributes for positioning based on the predefined 
positioning schedule, and send the current desired position 
to the positioning agent. When new GRB sources have 
been detected, the Meta Agent would be responsible for 
deciding when images of the new sources should be 
collected. If there is only one new GRB source, the Meta- 
Agent would immediately reposition to gather images of 
the GRB source since GRB images are most informative 
immediately following detection. If more than one new 
GRB source occurs within a few minutes of each other, 
the Meta Agent must consider the tradeoffs between 
repositioning the satellite for the second GRB source. 

This decision would be influenced by utility models that 
take into account the preferences of scientists for such a 
situation. These models may also take into account 
specific extrinsic attributes concerning a GRB image such 
as gamma-ray count rate and redshift. 
RM could also allow Swift processes to vary the 

resource consumption of each instrument and application. 
The rates at which the BAT, XRT, and W O T  perform 
their operations could be modeled as service attributes 
that RM could control resulting in different operating 
levels for each instrument. If storage space for images on 
the satellite is constrained, then the rate at which the Swift 
instruments create images could be changed possibly 
resulting m fewer images. This action would be triggered 
only in the case that on-board storage was insufficient to 
keep all data. 

In the absence of a new GRB, it may be desirable for 
the XRT and W O T  tasks to use a nominal amount of 
resources since they are not gathering information about a 
GRB. The absence of a GRB could be modeled as an 
extrinsic attribute that can assume two values indicating 
whether a GRB is present or not. The BAT would 
continue to scan and report to a Meta Agent that a GRB 
has not been detected, while the XRT and W O T  continue 
to perform a nominal sky survey. This allows other 
onboard applications to increase their resource 
consumption to perform various tasks such as further 
process the images collected thus far. Once a GRB has 
been detected, the BAT would reset the extrinsic attribute 
to indicate that a GRB has been detected and report it to 
the Meta Agent. The Meta Agent would noti6 the Global 
Meta Agent that a GRB is present and that it would like to 
have more resources for the XRT and UVOT tasks. The 
Global Meta Agent may ask the Allocation Manager for a 
new allocation or it may readjust the allowable service 
attributes for each subsystem. Other tasks on the satellite 
could either be shutdown or could perform at reduced 
service levels while the XRT and UVOT are gathering 
and processing information about the current GRB. 

The discussion thus far concentrates on a single 
satellite system. The Swift project will demonstrate that 
individual autonomous satellite systems can be 
successhlly deployed without resource management 
middleware. However, as NASA seeks to transition to 
constellations of cooperative satellites requiring 
autonomy, the need arises for a consistent flamework for 
resource management. We have discussed how our 
resource management framework could be applied to the 
Swift system with the realization that the same RM 
framework could be used to control the processing within 
a constellation of satellites. 

6. Conclusion 



In this paper, we have described in greater detail our 
previous model [ 121 for characterizing distributed real- 
time systems operating in dynamic environments. We 

resource management framework for increasing autonomy 
in spacecraft flight and science software. The main 
contribution of this paper is to describe how to apply our 
model to manage both software and observational [14] 
resources onboard a spacecraft to optimize the relative 
benefit of observations. 
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